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1. CLOE
CLOE is an interdisciplinary and inter-sectoral
Doctoral Programme co-funded by the EU and
developed by the University of Genoa in collab-
oration with academic and non-academic host
organisations.

5. Framework
The Kaniadakis divergence is defined by changes in the usual definition of the logarithm to the
Kaniadakis logarithm and the escort probability p̃. Aitchision distance quantifies the difference
between the compositional vectors while considering the constraints that the components sum to a
constant. Jeffreys divergnece measures how much more information is needed to describe one dataset
in terms of the other. If Jeffreys divergence is zero, it indicates that the two datasets are identical.
C-KL quantifies how one compositional distribution (e.g., the composition of a sample) differs from
another (e.g., a reference composition).

Divergences
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Kaniadakis’ Divergence
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1. Abstract
The study compares various divergence mea-
sures for clustering compositional data, focus-
ing on Kaniadakis’ divergence, a special case
of the C-KL divergence with escort probabili-
ties. Kaniadakis’ divergence performs well with
K-means clustering, achieving the lowest WSS
(0.5), highest CHI (189.97), and highest AS
(0.37) for simulation data. For real alimentation
data, it also shows strong performance with CHI
= 21 and AS = 0.39, highlighting its effective-
ness for compositional clustering.

2. Introduction
A composition is formally defined as a vector x
on the (D − 1) dimensional simplex space.

SD = {x = [x1, .., xD] :

xi > 0, i = 1, , .., D;
D∑

i=1
xi = κ},

In [1] describes a completely algebraic form
to summarise Kaniadakis’ logarithm. Accord-
ing to [2], the reciprocal derivative function A
is related to generalised logarithms. We can-
not incorporate with zeros because of logra-
tios.Kaniadakis’ logarithm is defined as.
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5. Clustering Results on Simulation and Alimentation Data Set
Divergences Within sum of Squares Calinski-Harabasz Index Average Silhouette

Simulation

200 samples Aitchison Distance 0.543 79.86 0.19
from the Dirichlet distribution Kullback Leibler divergence 0.543 80.96 0.20
with three compositional components Kaniadakis’ divergence 0.5 189.97 0.37
Mathematically Hellinger divergence 0.59 164 0.35
{xi}200

i=1 ∼ Dir(α1, α2, α3) j-divergence 0.61 131 0.32

Alimentation Data

Data set contains the percentages Aitchison Distance 0.45 21 0.34
of the consumption of several Kullback Leibler divergence 0.6 23 0.41
types of food during the 1980s Kaniadakis’ divergence 0.47 21 0.39
of 25 European countries, Hellinger divergence 0.36 17 0.21
grouped into 25 ethnic groups. j-divergence 0.34 15 0.24

6. Compositional Clustering on Simplex
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Results for simulation data are on the left, while results for Alimentation data are on the right(WM
is White Meat, RM is Red Meat and F is Fish

7. Findings and Future Work
• Kaniadakis’ divergence performs well in terms of WSS (lower is better), CHI, and AS, with

higher values for simulation data. For real data, it also shows higher AS, indicating that
Kaniadakis’ divergence is effective for compositional clustering.

• Similarities were observed between the Aitchison Distance and Kullback-Leibler methods on
simulation data, while the Hellinger and Jeffreys Distance produced different results.When ap-
plied to Alimentation data, the Aitchison Distance and Kullback-Leibler methods yield different
results.

• These differences will be better investigated both by understanding the mathematics behind
the clustering algorithms and the measures of efficiency, and by running further examples.

• Other divergences and measures of dissimilarities will be considered for compositional data,
including data with zero components.

3. Divergence Criteria for CoDa
key compositional properties:

1. Scale Invariance: d(λx, µy) =
d(x, y), ∀ λ, µ ∈ R+ ∀ x, y ∈ SD.

2. Subcompositional Dominance:
d(sx, sy) ≤ d(x, y)

3. Perturbation Invariance: d(x ⊕ z, y ⊕
z) = d(x, y) ∀ x, y, z ∈ SD.
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